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Introduction

Collisional kinetic plasma models (multispecies Vlasov-
Maxwell-Landau, etc.) provide high-fidelity simulation of
plasma physics, but at great computational cost.

A great variety of model reductions to these systems exist:

e Chapman-Enskog based asymptotic expansions in Kn ™!
(e.g. Braginskii [1])

e Ansatz-based extensions and regularizations of the Grad
13N Moment scheme |5]

¢ Dynamical low-rank methods evolve an ansatz for f as a
low-rank matrix in x and v. 4]

These methods save computation compared to the full 6 dimen-
sional kinetic equation. Making good use of reduced models
requires knowing when they are appropriate to apply.

e Hybridization: Split up physical domain into pieces
according to predetermined parameter cutoffs

e Adaptivity: Dynamically upscale and downscale plasma
model according to local conditions

But first: analyze data from full kinetic simulations to discover
where fluid-like models provide a good fit.

BGK Shocktube Problem

Neutral fluid BGK model in 1D1V provides a test case for
analyzing data-driven moment closure techniques.
Initial-boundary value problem:

r%{ vl = (%—{)BGK = L=l z € (0,L],t e |0,00)
£(0,0,0) = £(0,0,8) = M(1,0,pr), = € [0, L/2)
S(L,v,0) = f(L,v,t) = M(1,0,1), =€ |L/2,L]

with Maxwellian boundary conditions M(n, nu, nT).
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Figure: Representative BGK
shocktube solution f and its y metric
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Figure: Schematic of the moment
closure problem in 1D1V
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Sparse Regression (SINDy) for BGK ms

The SINDy technique [2] provides a method for discovering
nonlinear dynamics from data.
Minimization formulation:

min (JAE —ms| + AlIElh) = g = A¢

mZ

m3 mo mi m2 (%ml MoOyMo —= o o« §

A large nonlinear predictor m - a
library A consists of products to
of lower moments and their — .
spatial derivatives.

Dataset consists of 3 BGK tull -
kinetic simulations with ’ :
varying collision time 7 and
shock strength. o

Vlasov-Maxwell Simulation of
Kelvin-Helmholtz Instability

8tfa+v-VXf@+%(E+v «xB) - Vofa=0, (1)
where a ranges over the particle species {e, i}, and the fields
E, B are evolved with Maxwell’s equations.

3] and [6] simulate the KH instability. Here we use data from
3] on a hybridized domain:

BN
asov-maxwell 1371 0.050
ions N B
t=182.9
|-
\>1§ov-max>e\ll 2205
electrons [ | e
(a) Schematic of the domain hybridization (b) Maxwellian deviation x

Figure: The KH instability evolution sees x grow in the highlighted region,
where the ion species is treated kinetically.

Braginskii-like Heat Flux Closures

A Chapman-Enskog expansion of the collisional version of (1)
gives a perturbative closure relationship for the ion heat flux
in terms of the temperature:

q = /fz\v —ul*vdv
A —/{Hv”ﬂ — Kk V 1T;+ KJ/\(ZA? X VT;) + O(GQ). (2)

Braginskii

A Chapman-Enskog expansion of (1) cannot be justified

without a collision term; however the form of (2) suggests
a tunction library to learn a moment closure for q

SINDy results

Learned solution is not actually sparse: 89(!) out of 116 coef-
ficients are nonzero, even with L' regularization.
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(a) Learned mg closure (b) Residuals over time

Figure: SINDy results. Fit captures shock speeds reasonably well, but
residuals suggest poor generalization.

The magnetic field B is almost exactly constant, so we fit heat
flux closures of the form

4z _/{J_aa:iz—zi _ /{/\ayirz'
4y _'%J_ayrfi - /i/\achia

using a least-squares approach,

QU

min 01,0, T; 0 T:0,T| - €2 — ¢ ||,
min || [nT:0,T; nT0,Ty) - &z — ay”

Heat Flux Regression Results

Conclusion
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Figure: The simple linear regression described above predicts the shape of
the heat flux in both x and y

The time-integrated L' error is 43% in ¢, and only 18% in ¢,

Sparse Identification of Nonlinear Dynamics is likely not a suit-
able tool for moment closure problems, as evidenced by the
failure of sparsity on even a simple moment closure problem.
Asymptotic analysis such as the Chapman-Enskog expansion
is a more promising route for the discovery of relationships
between lower and higher moments. Even in a tully noncolli-
sional plasma simulation, the Chapman-Enskog derived Bra-
ginskii closure accounts for 60-80% of the ion heat flux.

Future Work and Open Questions

Open Questions:

e [s there a different SINDy library of nonlinear functions
that will give better results?

e Do the learned moment closures lead to a stable system?
Can a SINDy type framework be designed which will
ensure hyperbolicity of the resulting moment system?

e Can the observed moderate quality of fit to a
Braginskii-like moment closure be predicted by some other
asymptotic expansion of Equation (1)?

Future Work:

e Repeat Kelvin-Helmholtz instability simulations with a
range of collisionalities.

e Develop a generic moment closure evaluation tool to
determine whether proposed moment closures can stably
and accurately reproduce kinetic results.
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