Jack Coughlin

(206) 245-0838 • jack@johnbcoughlin.com

Professional Experience

Research Scientist Theory and Modeling Intern *Zap Energy*

- Performed MHD and multi-fluid simulations in validation of Zap's sheared flow-stabilized Z pinch fusion concept.
- Using JAX, developed a differentiable multi-fluid solver in cylindrical geometry for detailed investigation of stability in shear flow Z pinches.
- Developed robust shock-handling methods for high-order discontinuous Galerkin fluid solvers.
- Analyzed and improved performance of fluid solvers on HPC systems.

Graduate Research Intern, T-5 Applied Mathematics and Plasma Physics Group Los Alamos National Laboratory

- Using Julia, developed numerical methods for the efficient solution of plasma kinetic equations.

Senior Software Engineer, Payments

Square, Inc.

- Led the technical transition of Square's production accounting system from nightly payouts to stored balance features.
 We maintained continuity of service while replacing the guts of a system that moves hundreds of millions of dollars per day to customer bank accounts.
- Designed and implemented public APIs for money movement and accounting as part of Square's Marketplaces initiative.
- Contributed to the development of an automatic reconciliation engine for Square's payment and settlement systems.
- As a member of the Data Infrastructure team, developed and maintained Square's core data infrastructure primitives such as Kafka and Hadoop on behalf of machine learning practitioners and data analysts.

Consulting Cloud Engineer

Freewire, Inc.

- Designed an ingestion pipeline and query API for MQTT telemetrics from a fleet of mobile EV chargers.

Member of Technical Staff

University of Washington

Inscriptive, Inc.

- Developed a standalone anomaly detection service for server monitoring, backed by a new anomaly detection algorithm
 for time series data, combining Discrete Wavelet analysis with Kernel Density Estimation.
- Created a high-performance microservices application framework in Java, using gRPC and Kubernetes.

Education

Ph.D. in Applied Mathematics	
University of Washington	2019–2024
Thesis: Asymptotic and non-asymptotic model reduction for kinetic descriptions of plasma. [PDF]	
Advised by:	
Professor Jingwei Hu	Applied Mathematics
Professor Uri Shumlak	Aerospace and Energetics Research Program
B.S. in Mathematics	

2008–2013

2023, 2024-2025

2013-2016, 2018-2019

2022

2018

2016-2018

Publications

- [1] COUGHLIN, J., HU, J., AND SHUMLAK, U. Robust and conservative dynamical low-rank methods for the Vlasov equation via a novel macro-micro decomposition. *Journal of Computational Physics 509* (July 2024), 113055.
 [DOI] [arXiv]
- [2] COUGHLIN, J., AND HU, J. Efficient dynamical low-rank approximation for the Vlasov-Ampère-Fokker-Planck system. *Journal of Computational Physics* (Sept. 2022), 111590 [DOI] [arXiv]
- [3] COUGHLIN, J., AND PERRONE, G. Multi-scale Anomaly Detection with Wavelets. In Proceedings of the International Conference on Big Data and Internet of Thing - BDIOT2017 (London, United Kingdom, 2017), ACM Press, pp. 102–108

Preprints

[4] COUGHLIN, J., HU, J., AND SHUMLAK, U. Asymptotic perpendicular transport in low-beta collisionless plasma, Aug. 2024. [arXiv]

Talks and Posters

- [5] *Robust flux limiting of the Runge-Kutta Discontinuous Galerkin method for advection-dominated multiphysics plasma simulations.* Poster at APS DPP, October 2023. [abstract]
- [6] A Conservative Dynamical Low-rank Method for the Vlasov Equation. Invited talk at SIAM-NNP 2023.
- [7] Towards Efficient Dynamical Low-Rank Approximation of Collisional Kinetic Equations. Invited talk at SIAM CSE23.
 [abstract]
- [8] *Dynamical low-rank methods for capturing kinetic effects in the collisional transition regime.* Poster at APS DPP, October 2022. [abstract]
- [9] Low-rank decomposition of plasma kinetic distributions in the collisional transition regime. Poster at IEEE ICOPS, May 2022. [abstract]
- [10] *Asymptotic-preserving dynamical low-rank discretization of kinetic plasma models*. Presentation at Isaac Newton Institute, March 2022. [slides]
- [11] A Data-Driven Analysis of Non-Equilibrium Transport in the Magnetized Kelvin-Helmholtz Instability. Poster at APS DPP 2021. [abstract]

Patents

[12] PERRONE, G., LEDUC, M., COUGHLIN, J., AND KUMAR, A. Determining recommendations from buyer information, Sept. 2017. US Patent 9,767,471